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Abstract. The propagation of transverse electromagnetic waves in a layered electron gas is
studied from the point of view of the electromagnetic penetration depth. It is found that transverse
in-plane plasmons can be observed in systems consisting oftwo layers of charge carriers per
unit cell for special values of wave vector and frequency, determined by the intrinsic parameters
of the set-up like the Fermi velocity and the length scales of the unit cell. The internal degrees
of freedom in the two layers per unit cell as compared to one layer per unit cell make possible
this acoustic-like transverse plasmon. Above the cut-off frequency transverse electromagnetic
waves are attenuated as they propagate in the layered electron gas. The layered gas furthermore
behaves like a three-dimensional free-electron gas when the layers are close, having the same
penetration depth dependence on frequency and the electron relaxation time. In the opposite limit
of remote layers the penetration depth is found to be almost independent of these parameters.

1. Introduction

The study of various aspects of layered electron gases (LEG) is of great importance to
the understanding of the properties of a class of novel materials such as modulation-doped
compositional and strained semiconductor superlattices, doping semiconductor superlattices
and cuprate superconductors. The semiconductor superlattices and the single-crystal cuprate
superconductors can be modelled as one-dimensional arrays of two-dimensional (2D)
electron/hole sheets embedded into dielectric (host) media. There have been extensive
theoretical investigations on semiconductor superlattices and cuprate superconductors using
the LEG model [1–21]. The response of a LEG to an electromagnetic field has
also been a subject of interest from the viewpoints of propagation of electromagnetic
waves and the coupling of fields to charge fluctuations in the LEG. There exists a
considerable literature on plasmons, plasmon–phonon coupled modes and the light scattering
in semiconductor superlattices and superconductors [1–3, 10–22]. These investigations
have been motivated by experiments on epitaxially grown semiconductor superlattices [23–
26] and the superconducting superlattices [27]. However, in most existing investigations,
the response of a LEG to nonretarded longitudinal electromagnetic (LEM) fields has been
considered [1]. There have been few theoretical studies which consider the response of a
LEG to both longitudinal and transverse electromagnetic (TEM) fields in the retarded limit
[2, 3, 6].

From the existing literature [1–27], one reaches the understanding that the free
propagation of TEM waves can take place in a 3D electron gas and LEG in the retarded
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limit, i.e. whereω � kc, while LEM waves can freely propagate in an electron gas mainly
for ω � kc. ω, k andc are the frequency, wave vector and velocity of light respectively. In
the nonretarded limit, i.e. whereω � kc, TEM waves are attenuated as they travel through
the electron gas. The distance over which attenuation takes place is called the penetration
depth or skin depth, depending upon the ratioγ /ω. γ is the inverse of the relaxation time
of a charge carrier.

The aim of this paper is to show that TEM waves can also propagate freely in a
LEG in the limit whereω � kc, if we construct a system consisting of two conducting
layers of charge carriers in a unit cell. These transverse plasmons (self-sustained freely
propagating TEM waves) can be produced in this class of materials forω 6 ωc andk 6 kc,
whereωc and kc are upper cut-off values ofω and k, respectively. The frequency of the
transverse plasma mode is found to be in the microwave regime or higher, using relevant
parameters for a typical superlattice. Such a system, consisting of two layers of charge
carriers in a unit cell, might be a modulation-doped GaAs/AlxGa1−xAs superlattice with
two unequal successive layers of AlxGa1−xAs which are separated by a GaAs layer, a type-
II compositional or strained semiconductor superlattice, a doping superlattice, or a cuprate
superconductor like YBa2Cu3O7−δ or Bi2Sr2CaCu2O8. We further demonstrate that for
k > kc andωc < ω � kc, TEM waves are attenuated inside the LEG.

In what follows we calculate the penetration depth for TEM waves in a system with
one electron layer per unit cell to introduce our notation and the connection to the more
well-known case of penetration in a 3D homogeneous electron gas. The main emphasis
in the paper is on a field traversing the material perpendicularly to the stacking direction.
After that we do a similar calculation for a system consisting of two conducting layers of
charge carriers within a unit cell. We then find the possibility of having transverse plasmons
propagating as well as a frequency region where the field does not penetrate completely. In
the last section we introduce dispersion into our dielectric description to find the frequencies
of the new transverse plasmon modes.

2. General relations

We consider a one-dimensional (1D) array of two-dimensional (2D) conducting sheets
embedded along thez-axis into a dielectric medium of static dielectric constantεb. In
the absence of an external current source, the condition for propagation of a TEM wave in
the x–y plane is given by the solution to the equation

1 + 4π iωR(q, kz, ω)σ 0
t (q, ω) = 0 (1)

from Shi and Griffin [3]. q is the component ofk in the x–y plane. kz is a component
along thez-axis. σ 0

t (q, ω) is the transverse component of the general conductivity tensor
of a homogeneous 2D electron gas.

R is a structure factor of the LEG which has the following forms:

R(q, kz, ω) = 1

d(ω2 − c2q2 − c2k2
z )

(2)

whenω > qc and

R(q, kz, ω) = −1

2pc2

[
sinh(pd)

cosh(pd) − cos(kzd)

]
(3)

whenω < qc. p2 = q2 − (ω/c)2, andd is the length of a unit cell along thez-axis of the
LEG.
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In our calculations of the penetration depth we will use the following long-wavelength-
limit result (qvF � ω � qc) for the conductivity [3]:

σ 0
t (q, ω) = idω2

p

4πω
+ O

[
q2

ω3

]
. (4)

ω2
p = 4πnse

2/m∗εbd is the average plasma frequency including the screening from an
embedding background with dielectric functionεb. ns is the charge density per unit area
andm∗ is the effective mass of the charge carrier.

In analogy with the definition of a longitudinal dielectric function in [3, 28] we introduce
a transverse dielectric function for the LEG:

εt (q, kz, ω) ≡ 1 + 4π i

ω
R(q, kz, ω)(ω2 − c2q2)σ 0

t (q, ω). (5)

In terms ofεt we can rewrite equation (1) in a form analogous to the bulk polariton dispersion
relation for a 3D solid:

q2 = ω2

c2
εt (q, kz, ω). (6)

Notice that equation (6) is equivalent to equation (1); however, this way of writing things
makes it easier to insert the appropriate dielectric function in our subsequent analysis.

In what follows we will use the following long-wavelength form ofεt for one layer per
unit cell:

εt (q, kz, ω) = 1 − ω2
pd

ω(ω + iγ )
R(q, kz, ω)(ω2 − c2q2) (7)

by inserting equation (4) into equation (5) and making the substitutionω2 → ω(ω + iγ )

when we have a scattering mechanism present, through a relaxation time 1/γ . In the
nonretarded limit(ω < qc), R(q, kz, ω)(ω2 − c2q2) reduces to1

2pS(p, kz) whereS(p, kz)

is defined as

S(p, kz) = sinh(pd)

cosh(pd) − cos(kzd)
. (8)

If ω � qc we can setp ≡ √
(q2 − (ω/c)2) ' q.

The corresponding transverse dielectric function for the system having two layers of
charge carriers in a unit cell can, forω < qc, be written as [17]

εt (q, kz, ω) = 1 − (ω2
p1 + ω2

p2)qdS(q, kz)

2ω(ω + iγ )
+ ω2

p1ω
2
p2(qd)2S(q, kz)f (q)

4ω2(ω + iγ )2
(9)

where

f (q) ≡ cosh(qd) − cosh(q(2d1 − d))

sinh(qd)
. (10)

ωp1 andωp2 are obtained fromωp on replacingns by ns1 andns2 respectively.ns1 andns2

are carrier densities per unit area in thex–y planes of layer one and two respectively, in a
unit cell. d1 is the distance between these two layers. The third term on the right-hand side
of equation (9) originates from theinterlayer interaction in a unit cell, while the second
term on the right-hand side of equations (7) and (9) corresponds tointralayer interactions.
On top of this,S(q, kz) and f (q) contain the interactions between all of the cells in the
system.
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3. The penetration depth along the planes

In this section we calculate the penetration depth of a TEM field which travels along the
planes in the LEG with the field vector in the planes. We then assumekz to be real and
the LEG to be transparent along thez-axis. However, if we solve equation (6) above,
consideringkz to be complex andq to be real, we then get penetration of a TEM field along
the z-axis instead of in thex–y plane. In this case the LEG is transparent within thex–y

plane. The penetration depth along thez-axis is in this case found to be roughly 1/q for all
values ofγ /ω since there cannot be any energy transfer to electrons along thez-axis. We
therefore consider only the more interesting case of a TEM field in the plane of the layers
in what follows. However, first we will introduce some notation from the well-known 3D
situation.

If we take equation (7) and insertR(q, kz, ω) from equation (2) (ω > qc) it is easy to
demonstrate that the following is a solution to equation (6), for smallγ :

ω2 = ω2
p + c2(q2 + k2

z ). (11)

This is simply the bulk polariton dispersion relation for a homogeneous 3D electron gas.
Expressingkz in terms ofω instead, we get the typical penetration depthλ ∝ (Im kz)

−1 in
the homogeneous bulk electron gas as

λ = c√
(ω2

p − ω2 + c2q2)
. (12)

Notice furthermore from equation (6) that ifεt has a small imaginary part and the real part
of εt is negative,q ’s inverse gives the decay of the field. The frequency distinguishing
propagating from evanescent waves thus corresponds to the solution ofεt (q(ω, kz)) = 0.

Equation (6) with the use of equations (7) and (8) does not have a solution for real
q and ω for any values ofγ /ω. However, it can be solved for a complexq in the form
q = q1 + iq2. q−1

2 then describes the length over which attenuation of the TEM field
amplitudetakes place. To find the penetration depth in the LEG (in the limitω < qc) we
can write equation (6) in the following form for this situation:

x2 + y

2(1 + iz)

[
xsinhx

coshx − cos(kzd)

]
= 0 (13)

where we have introducedx ≡ pd and two other important dimensionless ratios:

y =
(

ωpd

c

)2

(14)

and

z = γ /ω. (15)

y andz control the physics of the problem in an obvious way.y compares the geometrical
length scale of the system with the typical length scale of the electromagnetic field in an
electron gas (c/ωp). z compares the time-scale (ω−1) of the external electromagnetic field
with the relaxation time-scale (γ −1). In all of our applications we will be in a situation
wherey is very small. For instance for a modulation-doped GaAs/AlxGa1−xAs superlattice
with εb = 13.1, m∗ = 0.068me, d = 700 Å, ns = 5.54× 1016 m−2 andc = 3 × 108 m s−1

we haveωp = 5.32× 1013 s−1 (35 meV) and hencec/ωp is 5.64×10−6 m and thereforey
is 1.5×10−4 � 1.

We are mainly interested in two limiting cases: (i) cos(kzd) ' 1; all layers of the LEG
in phase or the so-called strong-coupling limit [6]; and (ii) cos(kzd) ' −1; neighbouring
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layers out of phase or the so-called weak-coupling limit [6]. We will mainly focus on the
first case since we have primarily long-wavelength external electromagnetic fields in mind.
We do however comment on the other limit where appropriate. In the first case where both
y and kzd are very small,x is obviously small (cf. equation (13)) and we can therefore
expand the structure factor to arrive at

x2 + y

1 + iz

[
x2

x2 + (kzd)2

]
= 0. (16)

For the sake of setting the length scale of the penetration, we consider two extreme values
of z, i.e. z � 1 and z � 1. For kzd = 0 and z � 1 we then get a penetration depth
(q = q1 + iq2):

(Im q)−1 ≡ λ1 = c√
(ω2

p − ω2)
(17)

which we recognize as being similar to the penetration depth in a bulk solid (cf. equation
(12)). Notice furthermore that this result (forz � 1) is restricted toγ � ω < ωp, where
the upper limit is related to the fact that we need to consider an evanescent wave.

In the case wherez � 1 andkzd = 0,

λ1 = c

ωp

√
(2z). (18)

This λ1 is simply the classical skin depth in the case of a bulk metal. This suggests that
a LEG responds to a TEM field like a 3D free-electron gas forkzd → 0. Whenkzd 6= 0,
but small, equation (16) has the solutionsx = 0 (ω = qc) andx2 = −(kzd)2 − y/(1 + iz).
The first of these does not correspond to an evanescent wave (εt is not negative). Sincey
is so small,x ≈ ikzd, especially for largez. This means thatλ1 ' 1/kz and thereforeλ1 is
practically independent ofz.

In the case where cos(kzd) ' −1 we notice from equation (13) that, sincey is so
small,x has to be very close to ikzd to increase the structure function accordingly. In other
words, also in this limit,λ1 ≈ 1/kz for all values ofz, suggesting thatλ1 is actually almost
independent ofz(ω) for all kz except whenkzd is extremely small.kz in turn is determined
by the external probe and how it fits in with the geometry since in generalkzd is not given
as simply as an odd multiple ofπ . Finally it is to be noted that in this out-of-phase case
equation (6) describes the long-wavelength limit of the dielectric function of a conducting
thin film of thicknessd. It therefore can be concluded that the penetration depth in a thin
metallic film is almost independent of frequency for a TEM field in the plane of the film
and it is related to the perpendicular momentum component of the external probe provided
that this is related to the geometrical set-up. Notice furthermore that an isolated 2D sheet
does not sustain transverse EM modes [3]. For a finite-thickness sheet, see reference [29].

Equation (6) for the case of two layers per unit cell can be written (ω � qc) as

x2 + y1

[
(1 + α)xS

2(1 + iz)
− αx2Sf

4�2(1 + iz)2

]
= 0 (19)

where as beforex = qd and we have introduced� = ω/ωp1 andα = ω2
p2/ω

2
p1. z is given

above in equation (15) andy1 is obtained from equation (14) on replacingωp by ωp1. In
the limit of smallkzd, equation (19) takes the form

x2 = �2(1 + iz)

[
(kzd)2)(1 + iz) + y1(1 + α)

�2
c − �2(1 + iz)2

]
(20)
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Figure 1. The figure shows the ratio of the penetration depthλ2, in a system with two layers per
unit cell exposed to a transverse electromagnetic field propagating in the plane of the layers, for
a small dampingzc ≡ γ /ωc = 0.1 and for a large dampingzc = 10. γ is the inverse scattering
time and we give the results as a function ofz ≡ γ /ω. For computing our results shown in
this figure we have used parameters corresponding to a modulation-doped GaAs/AlxGa1−xAs
superlattice. The asymptotic result for this ratio for largez is proportional to 1/zc, with the
smallestzc of the two. Notice the structure for very smallz, which is the region where we have
the possibility of having transverse plasmons propagating in the structure and whose dispersion
relation is shown in figure 2.

where we have introduced the characteristic frequencyωc ≡ �cωp1 given by

ω2
c = ω2

p1ω
2
p2

c2
d1(d − d1) (21)

which is very important for the penetration depth as we will find below.
For z � 1 andkzd = 0 or ratherkz � ωp/c, equation (20) gives the following result

for the penetration depth:

λ2 ' c√
(ω2

p1 + ω2
p2)

[
1 − z2

z2
c

]1/2

(22)

wherezc ≡ γ /ωc. On the other hand ifz � 1 and cos(kzd) ' 1 we get

λ2 ' c√
(ω2

p1 + ω2
p2)

[
2z

(
1 + 1

z2
c

)]1/2

. (23)

It can be noted from equation (23) that forzc � 1, λ2 is of the same form asλ1 in equation
(18). Forzc small,λ2 is much larger thanλ2(largezc) by a factor 1/zc. This clearly shows
up in figure 1 where we show a plot of the ratio ofλ2 for a small value ofzc (=0.1) to
that of λ2 for a large value ofzc (=10) for a range ofz-values. For the computation ofλ2

we have takenns1 = ns2 = 5.54× 1016 m−2, d = 1500Å and d1 = 700 Å. The rest of the
parameters are taken as being the same as those cited after equation (15). These values of
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the parameters correspond to a GaAs/AlxGa1−xAs superlattice with two successive layers
of unequal widths.

Equation (22) suggests thatλ2 can be very small and TEM waves are totally screened
at the surface of a medium atω ' ωc, for small values ofγ . Thus with respect to screening
the LEG responds to TEM fields as it responds to a LEM field forγ 6 ω 6 ωc. For large
z we notice from equation (23) thatλ2 can be very large when there is a small damping
(zc). Furthermoreλ2 is much larger thanλ1 for ω � γ < ωc suggesting that the LEG is
almost transparent for TEM fields in this frequency region.

For 0< kzd < 1, λ2 ' 1/kz while the situation for coskkzd = −1 is more complicated
and no analytical results can be given except whenz � 1 whereλ2 ' d/π .

4. Transverse plasmons

Equation (22) indicates thatq2 becomes imaginary forγ � ω < ωc (zc < z), suggesting
that for this range ofω, equation (6) with the use of equation (9) can have a solution for
realq andω. This implies that there could exist transverse plasmons in the frequency range
γ < ω < ωc � qc, which is not found in the situation of one layer per unit cell [3].
However, equation (6) makes use of equation (4) which is valid forω � qvF . Therefore
in order to take into consideration the correct limit ofεt (q, kz, ω) as ω → 0, we modify
the form of εt (q, kz, ω) in equation (9) by lettingω2

pi/ω(ω + iγ ) (i = 1, 2) change to
ω2

pi/[ω(ω + iγ ) + q2v2
Fi/2] (i = 1, 2) letting γ be the same for simplicity.vFi (i = 1, 2)

are the Fermi velocities of charge carriers in layer one and layer two, respectively, of a unit
cell. We then solve equation (6) forω usingωp1 = ωp2 in equation (9) and we obtain

ω2
±(q, kz) =

(
qvF

2

)2

[b ± √
(b2 − 4A(1 + A))]/(1 + A) (24)

where

b(q, kz) ≡ f (q)

qa∗
0

− 1 − 2A(q, kz) (25)

and

A(q, kz) ≡ c2qa∗
0

2v2
F S(q, kz)

. (26)

a∗
0 is the effective Bohr radius (εbh̄

2/m∗e2) which for our choice of parameters is 102Å.
In the limit of small qd, A is O((qd)2) and the first term inb (equation (25)) goes to a
constant valueG, defined below in equation (28), depending only on the geometry of the
problem.

The ω± will be well-behaved plasma modes ifb2 > 4A(1 + A) and if b is positive.
This implies restrictions onqd andkzd which can only be fulfilled for small values ofqd

andkzd. We obtain

k ≡ √
(q2 + k2

z ) 6 vF (G − 1)

c
√

(da∗
0G)

≡ kc (27)

where we have introduced

G = 2d1(d − d1)

da∗
0

. (28)

G > 1 + 2A in order thatb and kc are positive. This puts restrictions ond1/d for the
superlattices which can show this type of mode, in terms of the value ofa∗

0. It should be a
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Figure 2. The frequency of the transverse plasmonω±(q, kz) (in units of ωc, equation (21)) in
a layered electron gas with two layers per unit cell plotted as a function ofq/kc with kzd as
a parameter. For the upper three modes (ω+) kzd is 0, 1/3 and 2/3 downwards while for the
lower three modes (ω−) it is the other way around.kc andωc define the upper wavenumber and
frequency respectively for which these modes can exist. Notice that theω+ (upper modes) have
a linear dispersion for smallq while theω− (lower modes) are quadratic. Again the calculation
is made with parameters corresponding to a modulation-doped GaAs/AlxGa1−xAs superlattice.
Similar modes should also show up in other layered structures, like cuprate superconductors.

feasible experimental test to compare two superlattices, with two layers per unit cell, where
one fulfils the condition for having transverse plasmons and the other does not, and to see
whether this can be distinguished experimentally. We find thatω± can be well-behaved
transverse plasmons modes in (q, ω)-space whenk 6 kc and γ < ω± < ωc < qc. The
ωc and kc are calculated using the values of parameters used to computeλ2 above, and
it is found thatωc/ωp = 0.01 whereωp is now smaller than before, sinced is larger;
furthermore,kcd = 0.03 andG = 7.32. Our computed values ofω±/ωc as a function of
q/kc for three different values ofkzd (0, 1/3 and 2/3), using the values of parameters used
to computeλ2, are shown in figure 2. In terms of our cut-off parametersωc andkc we can
write (for kzd = 0)

ω2
±

ω2
c

= (G − 1)3

8G2

(
q

kc

)2 [1 − (G − 1)q2/2Gk2
c ± √

(1 − q2/k2
c )]

[1 + (G − 1)2q2/4Gk2
c ]

. (29)

Notice that the maximum frequencyω± depends onG: ω±(G) = f (G)ωc. However,f (G)

is of order unity which is why we useωc to normalizeω±.
Figure 2 shows thatω+ is much larger thanω− for all values ofq andkz. Also ω+ is

almost linearly dependent onq for 0 6 q 6 0.3kc, while ω− increases almost quadratically
for all values ofq. Bothω+ andω− go to zero asq/kc → 0. The slope, or phase velocity, of
the ω+-mode is related tovF ([

√
((G − 1)/2)]vF ). The conditionγ � ω± can be satisfied

in a modulation-doped GaAs/AlxGa1−xAs superlattice which has two unequal successive
Al xGa1−xAs layers separated by a GaAs layer. In a modulation-doped GaAs/AlxGa1−xAs
superlattice electron–impurity scattering is negligibly small. Therefore the main contribution
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to γ comes from electron–lattice scattering which could be reduced to a required level
by cooling the sample. Though we carried out computations ofλ1 and λ2 and ω± for
the modulation-doped GaAs/AlxGa1−xAs superlattice, our equations (13), (19) and (24)
can also be computed for a normal slab of cuprate superconductors which have a highly
anisotropic layered structure. Several spectroscopic studies on the normal state of cuprate
superconductors show thatγ ∝ ω over a wide frequency region of interest andωp is much
higher than what could be observed in modulation-doped semiconductor superlattices. This
suggests that transverse plasmons in the microwave region might also be found in cuprate
superconductors like YBa2Cu3O7−δ and Bi2Sr2CaCu2O8 which each have two conducting
layers of charge carriers in a unit cell. For a further discussion of the relevant length
scales and the influence of tunnelling between layers see reference [30] and a forthcoming
publication where we will present a more detailed theoretical analysis of the existence
of transverse plasmons in high-Tc materials. Finally we should add the observation that
(surface) modes limited to certain frequency and wave-vector intervals, so-called stop modes
[31], have been shown to exist in ordinary metallic/insulator superlattices [32] exhibiting a
relationship betweenkc andG rather similar to that found here.

5. Summary

Summing up, we have found new modes of transverse plasmons in a layered electron gas
which are well-behaved plasma modes fork < kc andγ < ω± < ωc < qc. The value ofω±
is of the order of a few GHz for typical semiconductor superlattices. They can be observed
in systems consisting of two layers of charge carriers in a unit cell, at low temperatures.
These plasma modes are basically created by the interlayer interactions between layers in
a unit cell. These plasmon modes have not to our knowledge been reported before. Our
calculation of the electromagnetic penetration depth with one layer per unit cell,λ1, shows
that for in-phase layers (kzd → 0) it approachesc/ωp and(c/ωp)

√
2z for z � 1 andz � 1

respectively, while for layers not in phase,λ1 is almost independent ofz (=γ /ω). The
behaviour ofλ2 is similar to that ofλ1 for largez andzc (=γ /ωc). However for smallz,
λ2 significantly differs fromλ1, just as it does for largez and smallzc. It approaches zero
for very smallz (approachingzc) and it becomes imaginary for still lower values ofz. It
is this behaviour which makes possible the existence of transverse plasmons at very low
frequencies and small wave vectors.
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